Boyle discovered his law in 1661, and Newton and others tried to explain the behavior of gases by considering them as made of tiny atomic particles. The kinetic theory, established by Maxwell, Boltzmann, and others in the 19th century, explains the behavior of gases based on the idea of rapidly moving atoms or molecules. This theory provides a molecular interpretation of gas pressure and temperature, is consistent with gas laws and Avogadro’s hypothesis, and explains specific heat capacities of many gases.
According to Richard Feynman, the discovery that matter is made up of atoms is a significant one. Atoms are little particles that move in perpetual motion, attracting each other when a little distance apart and repelling upon being squeezed together.
Did You Know?
The size of an atom is about an angstrom 10−10. In solids, atoms are spaced about a few angstroms apart.
The behavior of gases can be described by the ideal gas equation:
PV=kT
where P is the pressure, V is the volume, and T is the temperature. For a sample of gas, k is proportional to the number of molecules N in the sample. We can write k=NkB, where kB is the Boltzmann constant.
Avogadro's hypothesis states that the number of molecules per unit volume is the same for all gases at a fixed temperature and pressure. The number of molecules in 22.4 liters of any gas is 6.02×1023, known as Avogadro's number, NA
A gas that perfectly satisfies the ideal gas equation at all pressures and temperatures is defined as an ideal gas. No real gas is truly ideal, but real gases approximate ideal behavior at low pressures and high temperatures.
NEET Problem-Solving Strategy:
Use the ideal gas equation PPV=nRT to solve problems involving pressure, volume, and temperature changes in gases. Remember to use absolute temperature (Kelvin).
Common Misconception:
Students often confuse the number of molecules with the number of moles. Remember, one mole of any gas contains Avogadro's number of molecules, regardless of the type of gas.
The kinetic theory of gases is based on the molecular picture of matter, where gas consists of a large number of molecules in incessant random motion. Molecules collide elastically with each other and with the walls of the container.
The pressure P of an ideal gas is related to the average kinetic energy of the molecules. Considering a cubic container with side l:
P=31nm⟨v2⟩
where n is the number density of molecules, m is the mass of a molecule, and langlev2⟩ is the mean squared speed of the molecules.
Temperature T of a gas is a measure of the average kinetic energy of its molecules:21m⟨v2⟩=23kBT
This equation shows that temperature is directly proportional to the average kinetic energy of the molecules.
Real-life Application:
The kinetic theory explains why a balloon expands when heated: increasing temperature increases the average kinetic energy of the gas molecules, causing them to collide more frequently and forcefully with the balloon's walls, increasing its volume.
NEET Tip:
Always use absolute temperature (Kelvin) when applying the kinetic theory equations. Convert Celsius to Kelvin by adding 273.15.
A molecule free to move in space needs three coordinates to specify its location. If it is constrained to move in a plane, it needs two coordinates, and if constrained to move along a line, it needs just one coordinate. Motion of a body from one point to another is called translation. Thus, a molecule free to move in space has three translational degrees of freedom.
According to the law of equipartition of energy, each degree of freedom contributes a term to the total energy. Each translational and rotational degree of freedom contributes a term that contains the square of some variable of motion.
For a diatomic molecule treated as a rigid rotator:
E=21mvx2+21mvy2+21mvz2+21I1ω12+21I2ω22
where omega1 and omega2 are the angular speeds about the axes of rotation, and I1 and I2 are the corresponding moments of inertia.
For monatomic gases, the molar specific heat at constant volume Cv is:
Cv=23R
For diatomic gases treated as rigid rotators:
Cv=25R
NEET Exam Strategy:
Understand the concept of degrees of freedom and apply the law of equipartition of energy to calculate the specific heats of different types of gases. Remember that vibrational modes contribute twice as much to the energy due to both kinetic and potential components.
Solutions: